

Silicon Carbide MOSFET N-Channel Enhancement Mode V_{DS} = 6500 V $R_{DS(ON)(Typ.)}$ = 300 mΩ I_{D} (Tc = 115°C) = 10 A

Features

- G2R[™] Technology +20 V / -5 V Gate Drive
- Superior Q_G x R_{DS(ON)} Figure of Merit
- Low Capacitances and Low Gate Charge
- Normally-Off Stable Operation up to 175°C
- Fast and Reliable Body Diode
- High Avalanche and Short Circuit Ruggedness
- Low Conduction Losses at High Temperatures

Advantages

- Increased Power Density for Compact System
- High Frequency Switching
- Reduced Losses for Higher System Efficiency
- Minimized Gate Ringing
- Improved Thermal Capability
- Superior Cost-Performance Index
- Ease of Paralleing without Thermal Runaway
- Simple to Drive

Applications

- High Voltage Converters
- Smart Grid and HVDC
- Traction
- Pulsed Power

Parameter	Symbol	Conditions	Values	Unit	Note
Drain-Source Voltage	V _{DS(max)}	V_{GS} = 0 V, I_D = 100 μA	6500	٧	
Gate-Source Voltage (Dynamic)	V _{GS(max)}		-10 / +25	٧	
Gate-Source Voltage (Static)	$V_{GS(op)}$	Recommended Operation	-5 / +20	٧	
		$T_C = 25^{\circ}C$, $V_{GS} = -5 / +20 V$	16		
Continuous Forward Current	I_{D}	$T_C = 100$ °C, $V_{GS} = -5 / +20 V$	11	Α	Note. 2
		$T_C = 135$ °C, $V_{GS} = -5 / +20 V$	8		
Power Dissipation	P _D	T _c = 25°C	315	W	Note. 2
Operating and Storage Temperature	T _j , T _{stg}		-55 to 175	°C	

Note 1: Pulse Width t_P Limited by $T_{i(max)}$

Note 2: Assuming $Rth_{JC(max)} = 0.48$ °C/W(insulated base-plate package)

Electrical Characteristics (At T _C = 25°C Unless Otherwise Stated)							
Davamatav	Symbol	O	Values			11!4	Mada
Parameter		Conditions	Min.	Тур.	Max.	Unit	Note
Drain-Source Breakdown Voltage	V_{DSS}	V_{GS} = 0 V, I_D = 100 μA	6500			٧	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 6500 \text{ V, } V_{GS} = 0 \text{ V}$		1		μΑ	
Gate Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V, } V_{GS} = 25 \text{ V}$			100	nA	
		V _{DS} = 0 V, V _{GS} = -10 V			-100		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 6.0$ mA	2.7			V	Fig. 9
		$V_{DS} = V_{GS}$, $I_D = 6.0$ mA, $T_j = 175$ °C		1.71			
Transconductance	G fs	$V_{DS} = 10 \text{ V}, I_D = 5 \text{ A}$		2.7		S	Fig. 4
		$V_{DS} = 10 \text{ V, } I_D = 5 \text{ A, } T_j = 175^{\circ}\text{C}$	2.9				
Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 20 \text{ V, } I_D = 5 \text{ A}$		300	375	mΩ	Fig. 5-8
		$V_{GS} = 20 \text{ V, } I_D = 5 \text{ A, } T_j = 175^{\circ}\text{C}$	993			11122	- 1 ig. 0 0
Input Capacitance	Ciss			4465	4465		
Output Capacitance	C_{oss}	V000 V V0 V		82		pF	Fig. 10
Reverse Transfer Capacitance	C_{rss}	$V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$ - $f = 1 \text{ MHz}, V_{AC} = 25 \text{mV}$		13.9			
Coss Stored Energy	E _{oss}	TWITE, VAC - ZOTTV		31		μJ	Fig. 11
Coss Stored Charge	Qoss		111		nC		
Internal Gate Resistance	R _{G(int)}	f = 1 MHz, V _{AC} = 25 mV		1.8		Ω	

Reverse Diode Characteristics							
Doromotor	Symbol	Conditions	Values		Unit	Note	
Parameter			Min.	Тур.	Max.	Unit	Note
Diada Farward Valtage	V_{SD}	$V_{GS} = -5 \text{ V, } I_{SD} = 5 \text{ A}$		4.2		W	Fig.
Diode Forward Voltage	V SD	$V_{GS} = -5 \text{ V, } I_{SD} = 5 \text{ A, } T_j = 175^{\circ}\text{C}$		3.6	V		12-13

Figure 1: Output Characteristics (T_i = 25°C)

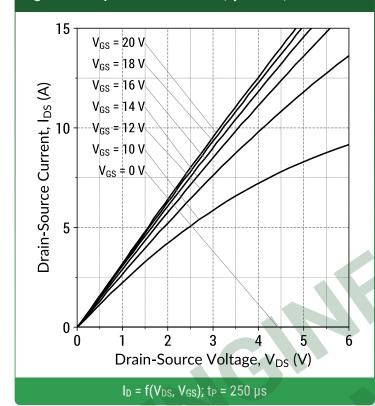
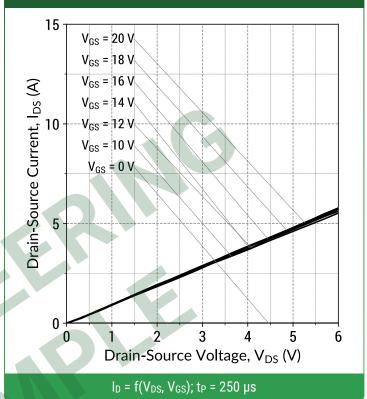



Figure 2: Output Characteristics (T_i = 175°C)

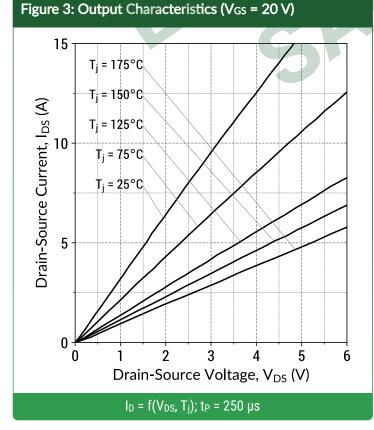
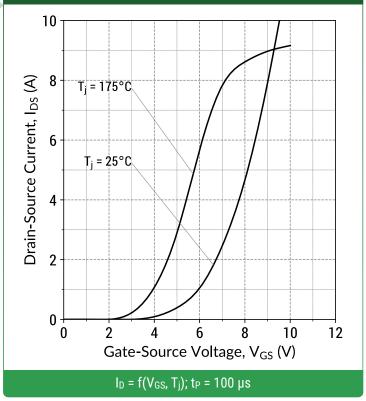
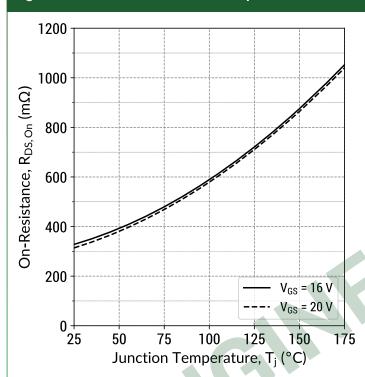
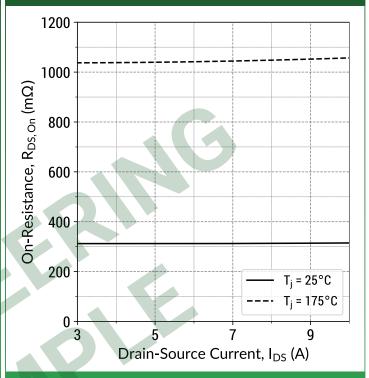




Figure 4: Transfer Characteristics (V_{DS} = 10 V)



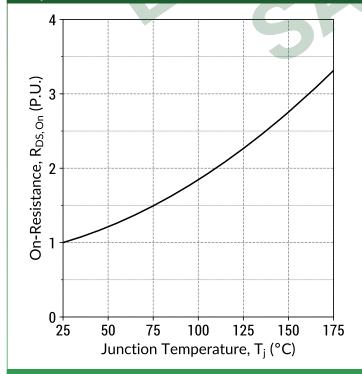

 $R_{DS(ON)} = f(T_j, V_{GS}); t_P = 250 \ \mu s; I_D = 5 \ A$

Figure 6: On-State Resistance v/s Drain Current

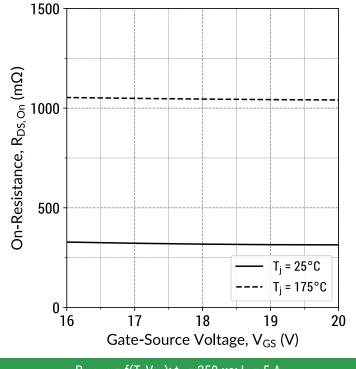
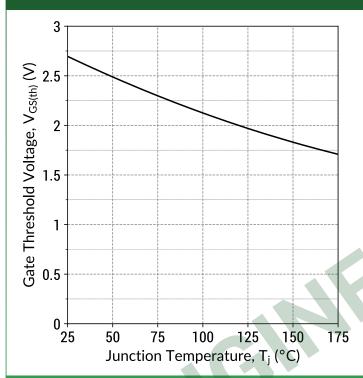
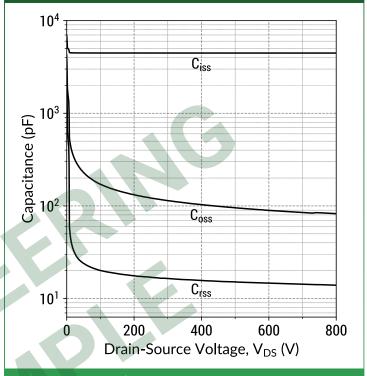

 $R_{DS(ON)} = f(T_j, I_D); t_P = 250 \mu s; V_{GS} = 20 V$

Figure 7: Normalized On-State Resistance v/s Temperature

 $R_{DS(ON)} = f(T_i)$; $t_P = 250 \mu s$; $I_D = 5 A$; $V_{GS} = 20 V$


Figure 8: On-State Resistance v/s Gate Voltage

 $R_{DS(ON)} = f(T_j, V_{GS}); t_P = 250 \ \mu s; I_D = 5 \ A$



 $V_{GS(th)} = f(T_j); V_{DS} = V_{GS}; I_D = 6.0 \text{ mA}$

Figure 10: Capacitance v/s Drain-Source Voltage

 $f = 1 MHz; V_{AC} = 25mV$

Figure 11: Output Capacitor Stored Energy

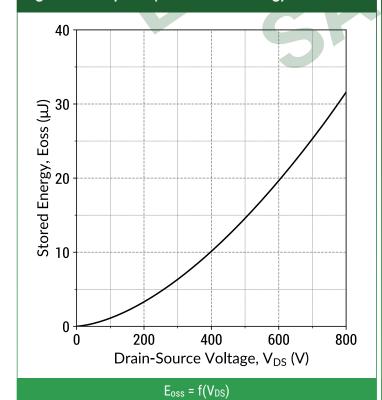
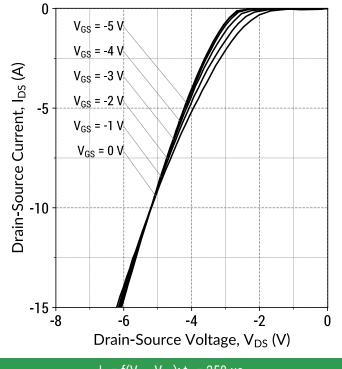



Figure 12: Body Diode Characteristics (T_j = 25°C)

 $I_D = f(V_{DS}, V_{GS}); t_P = 250 \mu s$

Figure 13: Body Diode Characteristics (T_j = 175°C)

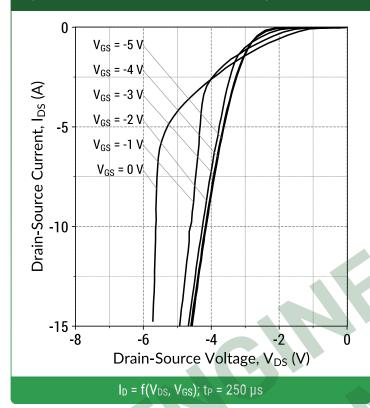


Figure 15: Third Quadrant Characteristics (T_j = 175°C)

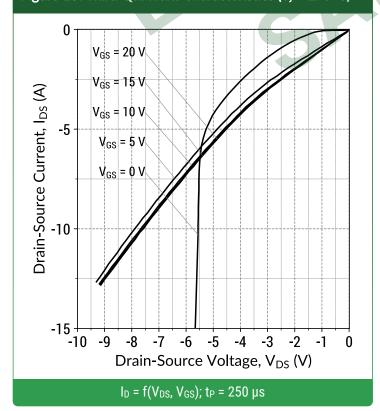
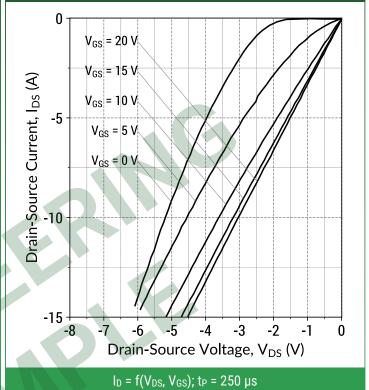



Figure 14: Third Quadrant Characteristics (T_j = 25°C)

Mechanical Parameters

This information is confidential, please contact sales@genesicsemi.com to learn more.

Chip Dimensions

This information is confidential, please contact sales@genesicsemi.com to learn more.

NOTE

- 1. CONTROLLED DIMENSION IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

SPICE Models: https://www.genesicsemi.com/sic-mosfet/G2R300MT65-CAL_G2R300MT65-CAL_SPICE.zip
PLECS Models: https://www.genesicsemi.com/sic-mosfet/G2R300MT65-CAL_G2R300MT65-CAL_PLECS.zip
CAD Models: https://www.genesicsemi.com/sic-mosfet/G2R300MT65-CAL_G2R300MT65-CAL_3D.zip

Gate Driver Reference: https://www.genesicsemi.com/technical-support
Evaluation Boards: https://www.genesicsemi.com/technical-support

Reliability: https://www.genesicsemi.com/reliability
Compliance: https://www.genesicsemi.com/compliance
Quality Manual: https://www.genesicsemi.com/quality

Revision History

•			
Date	Revision	Comments	Supersedes
Sep. 28, 2020	Rev 1	Initial Release	

www.genesicsemi.com/sic-mosfet/

