
Silicon Carbide Schottky Diode

 V_{RRM} = 1700 V $I_{F(T_C = 160^{\circ}C)}$ = 10 A Q_C = 83 nC

Features

- Gen4 Thin Chip Technology for Low V_F
- Enhanced Surge and Avalanche Robustness
- Superior Figure of Merit Q_C/I_F
- Low Thermal Resistance
- Low Reverse Leakage Current
- Temperature Independent Fast Switching
- Positive Temperature Coefficient of V_F
- Low V_F for High Temperature Operation

Advantages

- Improved System Efficiency
- High System Reliability
- Optimal Price Performance
- Reduced Cooling Requirements
- Increased System Power Density
- Zero Reverse Recovery Current
- Easy to Parallel without Thermal Runaway
- Improved System Efficiency

Applications

- EV Fast Chargers
- Solar Inverters
- Anti-Parallel / Free-Wheeling Diode
- Motor Drives
- High Frequency Rectifiers
- Switched Mode Power Supply (SMPS)
- Induction Heating and Welding
- Pulsed Power

Absolute Maximum Ratings (At T _C = 25°C Unless Otherwise Stated)								
Parameter	Symbol	Conditions	Values	Unit	Note			
Repetitive Peak Reverse Voltage	V_{RRM}		1700	٧				
Continuous Forward Current	l _F	T _C = 100°C, D = 1	26					
		$T_C = 135^{\circ}C$, D = 1	18	Α	Fig. 4			
		$T_C = 160^{\circ}C, D = 1$	10					
Non-Repetitive Peak Forward Surge Current, Half Sine Wave	І _{Б,ЅМ}	T_C = 25°C, t_P = 10 ms	100	٨				
		T_C = 150°C, t_P = 10 ms	80	Α				
Repetitive Peak Forward Surge Current, Half Sine Wave	I _{F,RM}	T_C = 25°C, t_P = 10 ms	60	Α				
		$T_C = 150$ °C, $t_P = 10$ ms	42	А				
Non-Repetitive Peak Forward Surge Current	I _{F,MAX}	T_C = 25°C, t_P = 10 μ s	500	Α				
i ² t Value	∫i²dt	T_C = 25°C, t_P = 10 ms	50	A ² s				
Non-Repetitive Avalanche Energy	E _{AS}	L = 4 mH, I _{AS} = 10 A	200	mJ				
Diode Ruggedness	dV/dt	V _R = 0 ~ 1360 V	200	V/ns				
Power Dissipation	P _{TOT}	T _C = 25°C	218	W	Fig. 3			
Operating and Storage Temperature	T_j , T_{stg}		-55 to 175	°C				

Symbol	Conditions -		Values			Unit	Note
Зуший			Min.	Тур.	Max.	Ollit	Note
V-	$I_F = 10 \text{ A, T}_j = 25^{\circ}\text{C}$			1.5	1.8	٧	Fig. 1
VF	I _F = 10 A, T _j = 175°C			2.1			
I-	V _R = 1700 V, T _j = 25°C			1	20	μΑ	Fig. 2
IR	$V_R = 1700 \text{ V, } T_j = 175^{\circ}\text{C}$			7			
0-	l _F ≤ I _{F,MAX} dI _F /dt = 200 A/µs	V _R = 600 V		56		nC	Fig. 7
QC		$V_R = 1200 V$		83		IIC	
+-		V _R = 600 V		- 10		no	
ις		$V_R = 1200 V$		< 10		115	
C	V _R = 1 V, f = 1MHz			721		ьE	Fig. 6
U	$V_R = 1200 V$,	f = 1MHz		40		рг	Fig. 0
	Symbol VF IR Qc ts	$V_{F} \qquad \qquad I_{F} = 10 \text{ A, T} \\ I_{F} = 10 \text{ A, T} \\ V_{R} = 1700 \text{ V,} \\ V_{R} = 1700 \text{ V,} \\ V_{R} = 1700 \text{ V,} \\ \\ Q_{C} \qquad \qquad I_{F} \leq I_{F,MAX} \\ dI_{F}/dt = 200 \text{ A}/\mu\text{s} \\ \\ C \qquad \qquad V_{R} = 1 \text{ V, f} = $	$V_{F} \qquad \begin{aligned} &I_{F} = 10 \text{ A, } T_{j} = 25^{\circ}\text{C} \\ &I_{F} = 10 \text{ A, } T_{j} = 175^{\circ}\text{C} \\ \\ &I_{R} \qquad V_{R} = 1700 \text{ V, } T_{j} = 25^{\circ}\text{C} \\ &V_{R} = 1700 \text{ V, } T_{j} = 175^{\circ}\text{C} \end{aligned}$ $Q_{C} \qquad \begin{aligned} &V_{R} = 1700 \text{ V, } T_{j} = 175^{\circ}\text{C} \\ &V_{R} = 600 \text{ V} \\ &V_{R} = 600 \text{ V} \\ &V_{R} = 1200 \text{ V} \end{aligned}$ $V_{R} = 1200 \text{ V}$ $V_{R} = 1200 \text{ V}$ $V_{R} = 1 \text{ V f } = 1 \text{ MHz}$	$V_{F} \qquad I_{F} = 10 \text{ A, } T_{j} = 25^{\circ}\text{C}$ $I_{F} = 10 \text{ A, } T_{j} = 175^{\circ}\text{C}$ $V_{R} = 1700 \text{ V, } T_{j} = 25^{\circ}\text{C}$ $V_{R} = 1700 \text{ V, } T_{j} = 175^{\circ}\text{C}$ $V_{R} = 1700 \text{ V, } T_{j} = 175^{\circ}\text{C}$ $V_{R} = 600 \text{ V}$ $V_{R} = 1200 \text{ V}$ $V_{R} = 600 \text{ V}$ $V_{R} = 1200 \text{ V}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Thermal/Package Characteristics								
Parameter	Symbol	Conditions	Values			Heit	Note	
		Conditions	Min.	Тур.	Max.	- Unit	Note	
Thermal Resistance, Junction - Case	R_{thJC}			0.69		°C/W	Fig. 9	
Weight	W _T			6.0		g		
Mounting Torque	T _M	Screws to Heatsink			1.1	Nm		

Figure 1: Typical Forward Characteristics

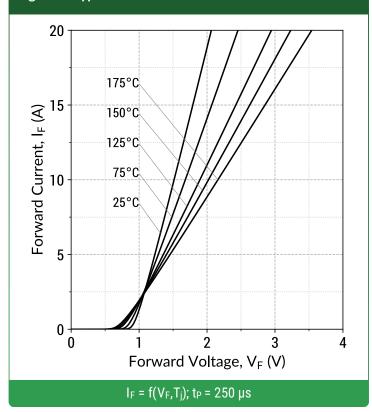
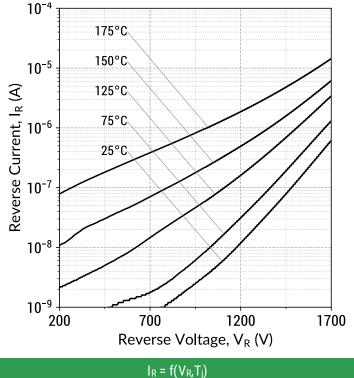
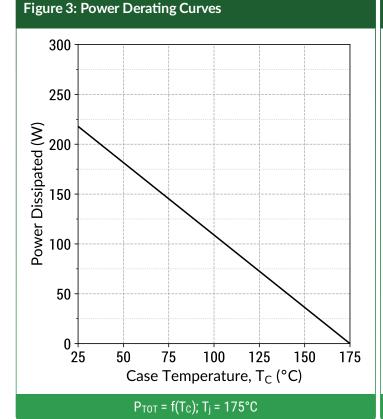
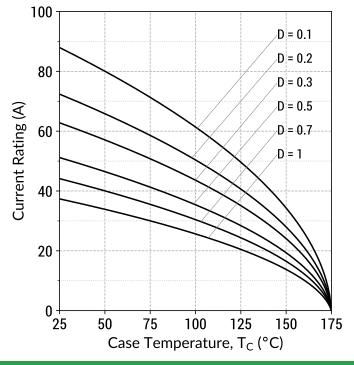
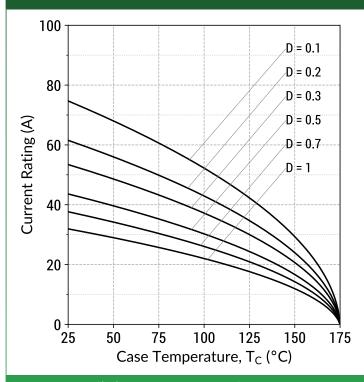



Figure 2: Typical Reverse Characteristics


Figure 4: Current Derating Curves (Typical V_F)

 $I_F = f(T_C)$; D = t_P/T ; $T_j \le 175$ °C; $f_{SW} > 10$ kHz

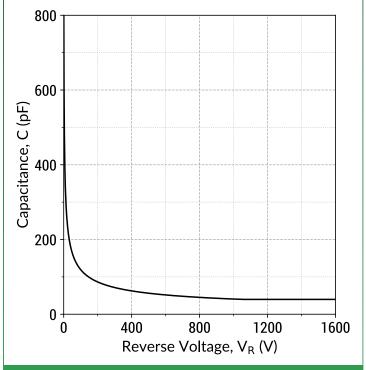


Figure 5: Current Derating Curves (Maximum V_F)


 $I_F = f(T_C)$; D = t_P/T ; $T_j \le 175$ °C; $f_{SW} > 10$ kHz

Figure 6: Typical Junction Capacitance vs Reverse Voltage Characteristics

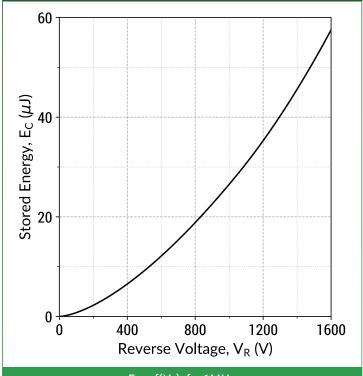
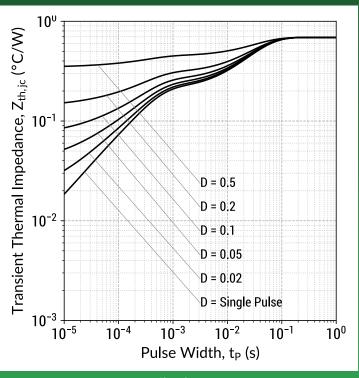

 $C = f(V_R)$; f = 1MHz

Figure 7: Typical Capacitive Charge vs Reverse Voltage Characteristics

 $Q_C = f(V_R)$; f = 1MHz


Figure 8: Typical Capacitive Energy vs Reverse Voltage Characteristics

 $E_C = f(V_R)$; f = 1MHz

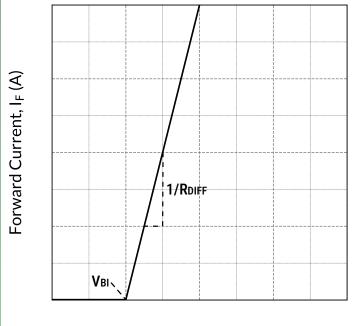


Figure 9: Transient Thermal Impedance

 $Z_{th,jc} = f(t_P,D); D = t_P/T$

Figure 10: Forward Curve Model

Forward Voltage, $V_F(V)$

 $I_F = f(V_F, T_j)$

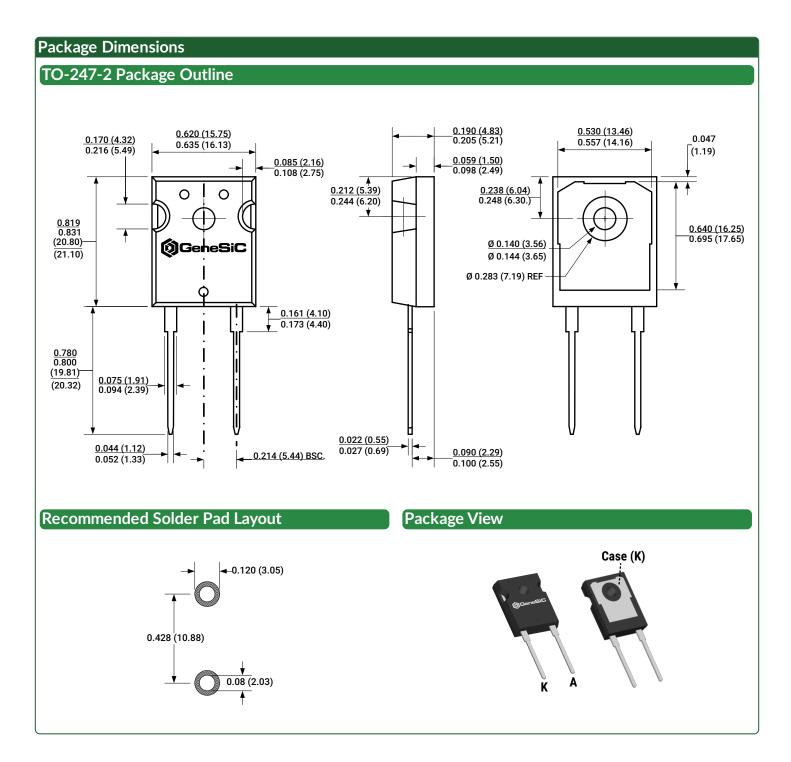
Forward Curve Model Equation:

 $I_F = (V_F - V_{BI})/R_{DIFF} (A)$

Built-In Voltage (V_{BI}):

$$V_{BI}(T_j) = m \times T_j + n (V)$$

 $m = -0.00126 (V/^{\circ}C)$
 $n = 0.997 (V)$


Differential Resistance (RDIFF):

$$R_{DIFF}(T_j) = a \times T_j^2 + b \times T_j + c (\Omega)$$

 $a = 1.02e-06 (\Omega/^{\circ}C^2)$
 $b = 0.000352 (\Omega/^{\circ}C)$
 $c = 0.0456 (\Omega)$

Forward Power Loss Equation:

$$P_{LOSS} = V_{BI}(T_i) \times I_{AVG} + R_{DIFF}(T_i) \times I_{RMS}^2$$

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

SPICE Models: https://www.genesicsemi.com/sic-schottky-mps/GD10MPS17H/GD10MPS17H_SPICE.zip
 PLECS Models: https://www.genesicsemi.com/sic-schottky-mps/GD10MPS17H/GD10MPS17H_PLECS.zip
 CAD Models: https://www.genesicsemi.com/sic-schottky-mps/GD10MPS17H/GD10MPS17H_3D.zip

• Evaluation Boards: https://www.genesicsemi.com/technical-support

Reliability: https://www.genesicsemi.com/reliability
 Compliance: https://www.genesicsemi.com/compliance
 Quality Manual: https://www.genesicsemi.com/quality

Revision History

Rev 21/Jun: Updated with most recent test data

· Supersedes: Rev 20/Jul

www.genesicsemi.com/sic-schottky-mps/

