

Silicon Carbide Schottky Diode

 V_{RRM} 3300 V $I_{F(T_C = 152^{\circ}C)} =$ 40 A 429 nC Qc

Features

- Enhanced Surge and Avalanche Robustness
- Low V_F for High Temperature Operation
- Superior Figure of Merit Qc/IF
- Low Thermal Resistance
- Low Reverse Leakage Current
- Temperature Independent Fast Switching
- Positive Temperature Coefficient of V_F
- High dV/dt Ruggedness

Advantages

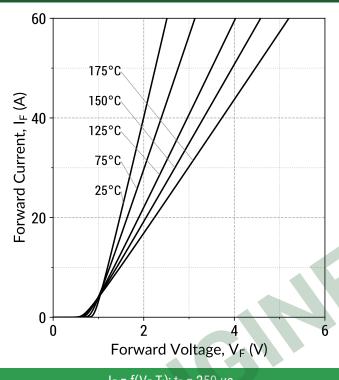
- · High System Reliability
- Optimal Price Performance
- Improved System Efficiency
- Reduced Cooling Requirements
- Increased System Power Density
- Zero Reverse Recovery Current
- Easy to Parallel without Thermal Runaway
- Enables Extremely Fast Switching

Applications

- **EV Fast Chargers**
- 1500V Solar Inverters
- **Pulsed Power**
- **HVDC** and **Grid-Converters**
- **Industrial Power Supply**
- **Motor Traction**
- Medical Imaging
- High Voltage Converters

Absolute Maximum Ratings (At T_C = 25°C Unless Otherwise Stated)

raiailietei	Syllibol	Conditions	values	Ullit	HOLE
Repetitive Peak Reverse Voltage	V_{RRM}		3300	٧	
		$T_C = 100^{\circ}C, D = 1$	75		
Continuous Forward Current	l _F	$T_C = 135^{\circ}C$, D = 1	54	Α	Fig. 4
		$T_C = 152^{\circ}C$, D = 1	40		
Non-Repetitive Peak Forward Surge Current, Half Sine	I _{F,SM}	T_C = 25°C, t_P = 10 ms	500	٨	
Wave		$T_C = 150$ °C, $t_P = 10$ ms	400	Α	
Repetitive Peak Forward Surge Current, Half Sine Wave		T_C = 25°C, t_P = 10 ms	300	۸	
	I _{F,RM}	$T_C = 150$ °C, $t_P = 10$ ms	210	Α	
Non-Repetitive Peak Forward Surge Current	I _{F,MAX}	T _C = 25°C, t _P = 10 μs	2500	Α	
i ² t Value	∫i²dt	T_C = 25°C, t_P = 10 ms	1250	A ² s	
Non-Repetitive Avalanche Energy	E _{AS}	L = 1.2 mH, I _{AS} = 40 A	1000	mJ	
Diode Ruggedness	dV/dt	$V_R = 0 \sim 2640 \text{ V}$	200	V/ns	
Power Dissipation	P _{TOT}	T _C = 25°C	944	W	Fig. 3
Operating and Storage Temperature	T _j , T _{stg}		-55 to 175	°C	



Parameter		Conditions -		Values				
	Symbol			Min.	Тур.	Max.	Unit	Note
Diode Forward Voltage	V _F	I _F = 40 A, T _j = 25°C		·	1.95	2.5	٧	Fig. 1
	VF	$I_F = 40 \text{ A}, T_j = 175^{\circ}\text{C}$			3.7		V	
Reverse Current	l _s	$V_R = 3300 \text{ V, } T_j = 25^{\circ}\text{C}$			10	100	μΑ	Fig. 2
	lr	$V_R = 3300 \text{ V, } T_j = 175^{\circ}\text{C}$			200			
Total Capacitive Charge	Qc		V _R = 1500 V		399		nC	Fig. 7
	QC	IF ≤ I _{F,MAX}	V _R = 1700 V		429		IIC	riy. /
Switching Time	ts	$dI_F/dt = 200 A/\mu s$	V _R = 1500 V		< 10		ns	
	ις		V _R = 1700 V		10		115	
Total Capacitance	С	V _R = 1 V, f = 1MHz V _R = 1700 V, f = 1MHz			3480		pЕ	Fig. 6
	U				150		pF	1 1y. 0

Parameter	Symbol	Conditions	Values			Unit	Note
		Conditions	Min.	Тур.	Max.	- Unit	Note
Thermal Resistance, Junction - Case	R _{thJC}			0.16		°C/W	Fig. 9
Weight	W _T			6.0		g	
Mounting Torque	T _M	Screws to Heatsink			1.1	Nm	
	Ç						

Figure 1: Typical Forward Characteristics

 $I_F = f(V_F, T_j); t_P = 250 \mu s$

Figure 2: Typical Reverse Characteristics

 $I_R = f(V_R, T_j)$

Reverse Voltage, V_R (V)

2000

3000

Figure 3: Power Derating Curves

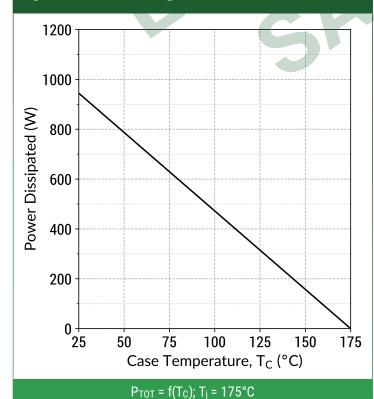
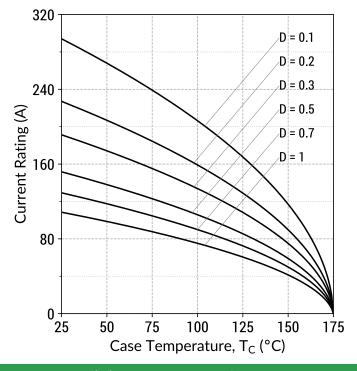
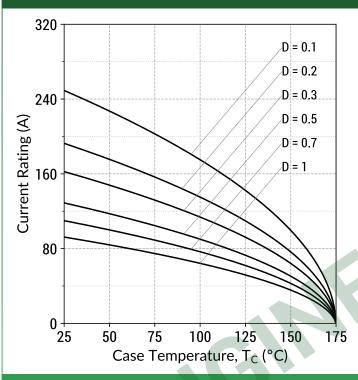



Figure 4: Current Derating Curves (Typical V_F)

1000


 10^{-9}

 $I_F = f(T_C); D = t_P/T; T_j \le 175^{\circ}C; f_{SW} > 10kHz$

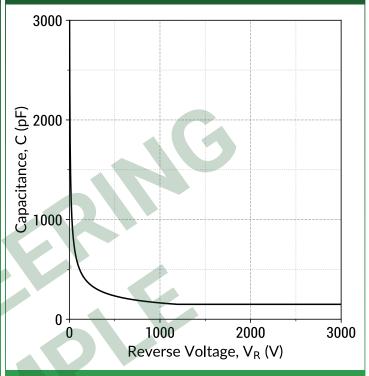


Figure 5: Current Derating Curves (Maximum V_F)

 $I_F = f(T_C); D = t_P/T; T_j \le 175^{\circ}C; f_{SW} > 10kHz$

Figure 6: Typical Junction Capacitance vs Reverse Voltage Characteristics

 $C = f(V_R); f = 1MHz$

Figure 7: Typical Capacitive Charge vs Reverse Voltage Characteristics

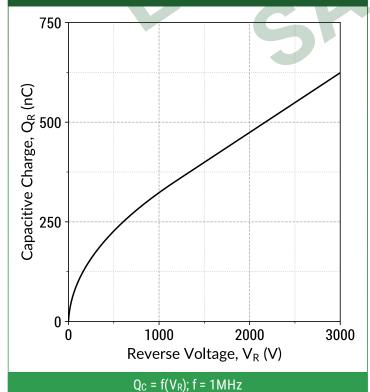
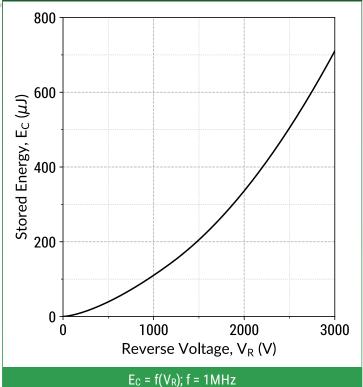
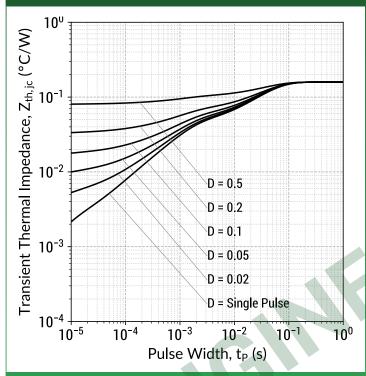


Figure 8: Typical Capacitive Energy vs Reverse Voltage Characteristics

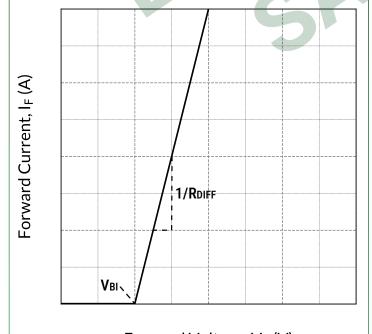


Figure 9: Transient Thermal Impedance

 $Z_{th,jc} = f(t_P,D); D = t_P/T$

Figure 10: Forward Curve Model

Forward Voltage, $V_F(V)$

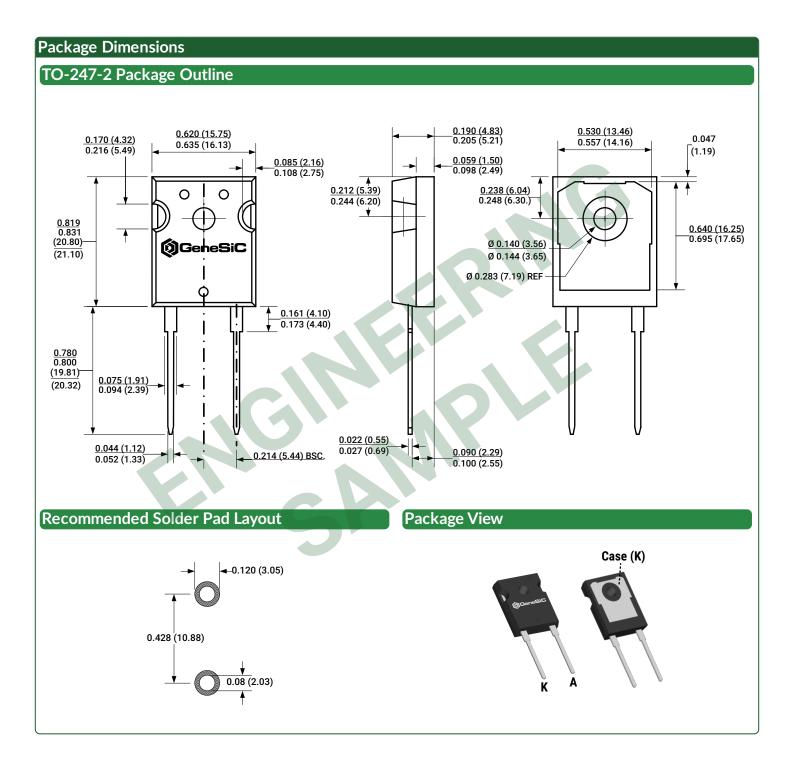
 $I_F = f(V_F, T_j)$

Forward Curve Model Equation:

 $I_F = (V_F - V_{BI})/R_{DIFF}(A)$

Built-In Voltage (V_{BI}):

 $V_{BI}(T_j) = m \times T_j + n (V)$ $m = -0.0013 (V/^{\circ}C)$ n = 0.997 (V)


Differential Resistance (RDIFF):

 $R_{DIFF}(T_j) = a \times T_j^2 + b \times T_j + c (\Omega)$ $a = 9.35e-07 (\Omega/^{\circ}C^2)$ $b = 0.000134 (\Omega/^{\circ}C)$ $c = 0.0219 (\Omega)$

Forward Power Loss Equation:

 $P_{LOSS} = V_{BI}(T_j) \times I_{AVG} + R_{DIFF}(T_j) \times I_{RMS}^2$

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

SPICE Models: https://www.genesicsemi.com/sic-schottky-mps/GC50MPS33H/GC50MPS33H_SPICE.zip
PLECS Models: https://www.genesicsemi.com/sic-schottky-mps/GC50MPS33H/GC50MPS33H_PLECS.zip
CAD Models: https://www.genesicsemi.com/sic-schottky-mps/GC50MPS33H/GC50MPS33H_3D.zip

· Evaluation Boards: https://www.genesicsemi.com/technical-support

Reliability: https://www.genesicsemi.com/reliability
Compliance: https://www.genesicsemi.com/compliance
Quality Manual: https://www.genesicsemi.com/quality

Revision History

Rev 21/Jun: Initial Release

www.genesicsemi.com/sic-schottky-mps/

