

High Temperature Silicon Carbide Power Schottky Diode

V_{RRM} = 300 V $I_{F (Tc=25^{\circ}C)}$ = 4 A Q_{C} = 9 nC

Features

- 300 V Schottky rectifier
- 210 °C maximum operating temperature
- Zero reverse recovery charge
- · Superior surge current capability
- Positive temperature coefficient of V_F
- Temperature independent switching behavior
- Lowest figure of merit Q_C/I_E
- Available screened to Mil-PRF-19500

Package

• RoHS Compliant

TO - 46

Advantages

- High temperature operation
- Improved circuit efficiency (Lower overall cost)
- · Low switching losses
- Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- Industry's lowest reverse recovery charge
- Industry's lowest device capacitance
- · Ideal for output switching of power supplies
- Best in class reverse leakage current at operating temperature

Applications

- Down Hole Oil Drilling
- Geothermal Instrumentation
- Solenoid Actuators
- General Purpose High-Temperature Switching
- Amplifiers
- Solar Inverters
- Switched-Mode Power Supply (SMPS)
- Power Factor Correction (PFC)

Maximum Ratings at T_i = 210 °C, unless otherwise specified

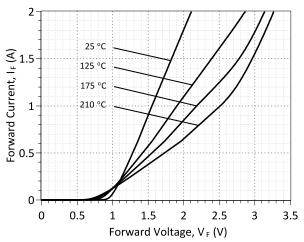
Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		300	V
Continuous forward current	I _F	T _C = 25 °C	4	Α
Continuous forward current	I_{F}	T _C ≤ 180 °C	2	Α
RMS forward current	I _{F(RMS)}	T _C ≤ 180 °C	4	Α
Surge non-repetitive forward current, Half Sine Wave	$I_{F,SM}$	T_C = 25 °C, t_P = 10 ms	10	Α
Non-repetitive peak forward current	$I_{F,max}$	$T_{\rm C}$ = 25 °C, $t_{\rm P}$ = 10 $\mu {\rm s}$	65	Α
l ² t value	∫i² dt	$T_{\rm C}$ = 25 °C, $t_{\rm P}$ = 10 ms	0.5	A^2S
Power dissipation	P_{tot}	T _C = 25 °C	64	W
Operating and storage temperature	T_j , T_stg		-55 to 210	°C

Electrical Characteristics at T_i = 210 °C, unless otherwise specified

Parameter	Symbol	Conditions m		Values		1114	
Parameter	Symbol			min.	typ.	max.	Unit
Diode forward voltage	V_{F}	I _F = 1 A, T _j = 25 °C I _F = 1 A, T _j = 210 °C		1.6		V	
	VF			2.6			
Reverse current	1	$V_R = 300 \text{ V}, T_j = 25 ^{\circ}\text{C}$		1	5	μΑ	
	IR	$V_R = 300 \text{ V}, T_j = 210 ^{\circ}\text{C}$		5	50		
Total capacitive charge	Qc	$I_F \le I_{F,MAX}$ $dI_F/dt = 200 \text{ A/µs}$	V _R = 300 V		9		nC
Switching time	t _s	$T_i = 210 ^{\circ}\text{C}$	V _R = 300 V		< 17		ns
Total capacitance	С	$V_R = 1 \text{ V, f} = 1 \text{ MHz, T}_j = 25 \text{ °C}$ 76		76			
	C	$V_R = 300 \text{ V}, f = 1 \text{ MHz}$	z, T _i = 25 °C		15		pF

Thermal Characteristics

Thermal resistance, junction - case


Mechanical Properties			
Mounting torque	M	0.6	Nm

 $R_{th,IC}$

°C/W

5.55

Figure 1: Typical Forward Characteristics

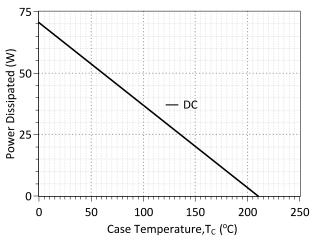


Figure 3: Power Derating Curve

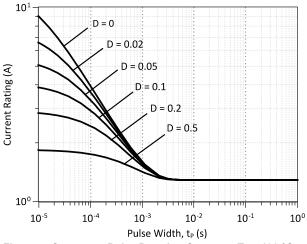


Figure 5: Current vs Pulse Duration Curves at T_c = 190 °C

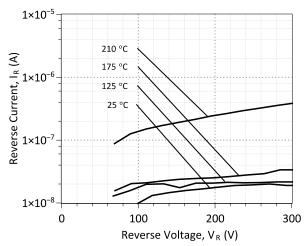


Figure 2: Typical Reverse Characteristics

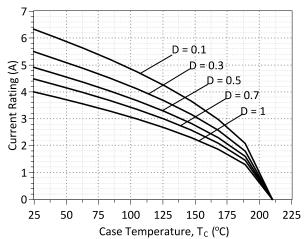
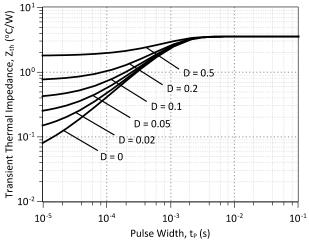
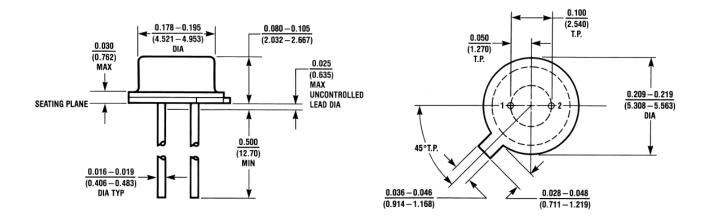


Figure 4: Current Derating Curves (D = t_p/T , t_p = 400 μ s) (Considering worst case Z_{th} conditions)




Figure 6: Transient Thermal Impedance

Package Dimensions:

TO-46

PACKAGE OUTLINE

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date	Revision	Comments	Supersedes		
2014/08/29	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

This is a secure document. Copy this code from the SPICE model PDF file on our website into a SPICE software program for simulation of the GB02SHT03-46.

```
MODEL OF GeneSiC Semiconductor Inc.
     $Revision: 1.0
                                $
     $Date: 29-AUG-2014
                                $
    GeneSiC Semiconductor Inc.
     43670 Trade Center Place Ste. 155
    Dulles, VA 20166
    COPYRIGHT (C) 2014 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
* Start of GB02SHT03-46 SPICE Model
.SUBCKT GB02SHT03ANODE KATHODE
D1 ANODE KATHODE GB02SHT03 25C; Call the Schottky Diode Model
D2 ANODE KATHODE GB02SHT03 PIN; Call the PiN Diode Model
.MODEL GB02SHT03 25C D
+ IS
       3.57E-18
                                      0.49751
                           RS
+ TRS1
          0.0057
                          TRS2
                                      2.40E-05
         1
+ N
                          IKF
                                     322
+ EG
         1.2
                          XTI
         9.12E-11
                                      0.371817384
+ CJO
                          VJ
         1.527759838
+ M
                         FC
                                     0.5
+ TT
         1.00E-10
                                      300
                          BV
          1.00E-03
                           VPK
                                      300
+ IBV
                                      SiC Schottky
+ IAVE
                           TYPE
+ MFG
         GeneSiC Semiconductor
.MODEL GB02SHT03 PIN D
+ IS
      5.73E-11
                           RS
                                      0.72994
+ N
                           IKF
                                     800
+ EG
          3.23
                                      -14
                          XTI
+ FC
          0.5
                          TT
+ BV
          300
                           IBV
                                      1.00E-03
          300
+ VPK
                           IAVE
+ TYPE
          SiC PiN
.ENDS
```

* End of GB02SHT03 SPICE Model