
Silicon Carbide Schottky Diode

VRRM =	3300 V
I F (T∟ ≤ 125°C) =	0.3 A
Qc =	14 nC

Features

- Enhanced Surge and Avalanche Robustness
- Superior Figure of Merit Q_C/I_F
- Low V_F for High Temperature Operation
- Low Thermal Resistance
- Low Reverse Leakage Current
- Temperature Independent Fast Switching
- Positive Temperature Coefficient of V_F
- High dV/dt Ruggedness

Advantages

- High System Reliability
- Optimal Price Performance
- Improved System Efficiency
- Reduced Cooling Requirements
- Increased System Power Density
- Zero Reverse Recovery Current
- Easy to Parallel without Thermal Runaway
- Enables Extremely Fast Switching

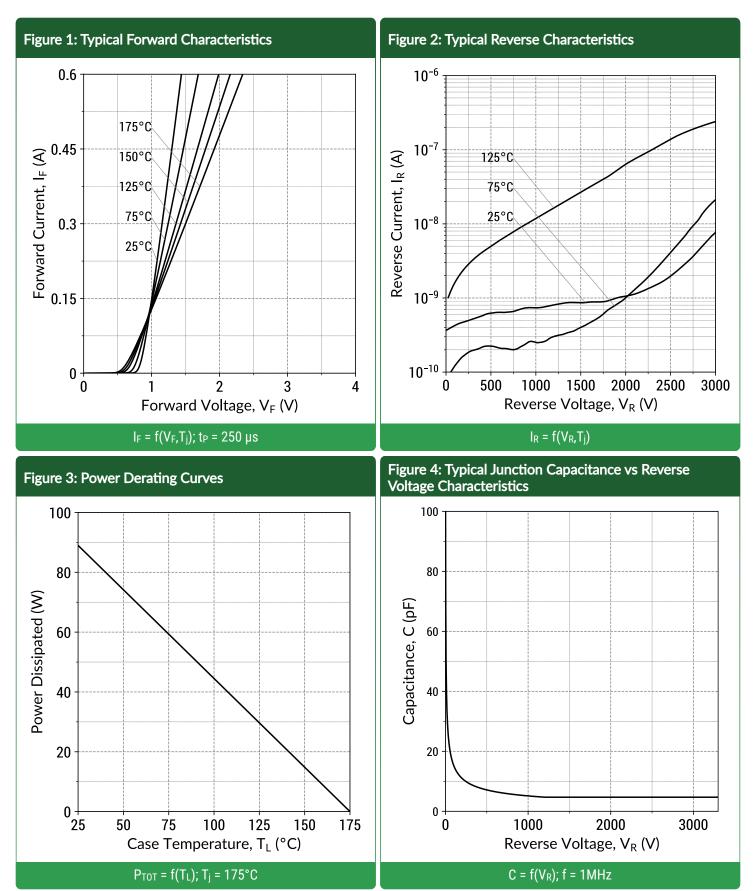
Applications

- Medical Imaging
- High Voltage Sensing
- Oil Drilling
- Geothermal Instrumentation
- High Voltage Multipliers
- High Frequency Rectifiers
- High Voltage Switching
- Pulsed Power

Absolute Maximum Ratings (At T_L = 25°C Unless Otherwise Stated)

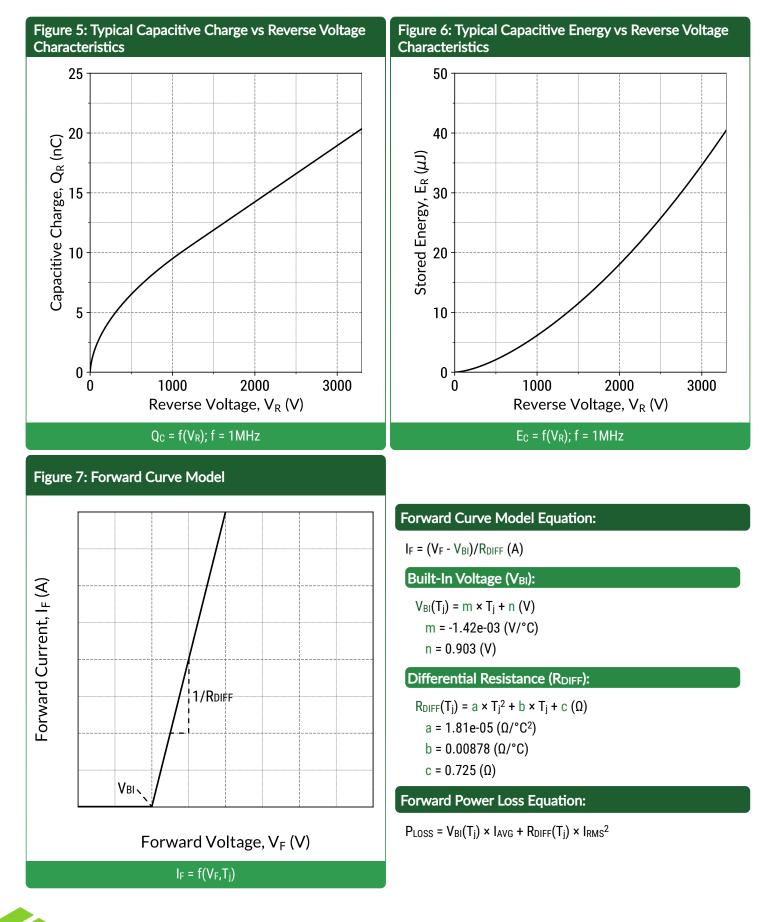
Parameter	Symbol	Conditions	Values	Unit	Note
Repetitive Peak Reverse Voltage	V _{RRM}		3300	٧	
Continuous Forward Current	IF	T _L ≤ 125°C, D = 1	0.3	Α	
Non-Repetitive Peak Forward Surge Current, Half Sine	l	T_L = 25°C, t _P = 10 ms	2	٨	
Wave	IF,SM	T∟ = 150°C, t _P = 10 ms	1	А	
Repetitive Peak Forward Surge Current, Half Sine Wave	lenu	T_L = 25°C, t _P = 10 ms	1.4	٨	
Repetitive Peak Forward Surge Current, Hall Sine Wave	IF,RM	T∟ = 150°C, tP = 10 ms	1	A	
Non-Repetitive Peak Forward Surge Current	I _{F,MAX}	T _L = 25°C, t _P = 10 μs	10	А	
i ² t Value	∫i²dt	T _L = 25°C, t _P = 10 ms	0.02	A ² s	
Diode Ruggedness	dV/dt	V_{R} = 0 ~ 2640 V	100	V/ns	
Power Dissipation	Ртот	T _L = 25°C	89	W	Fig. 3
Operating and Storage Temperature	T _j , T _{stg}		-55 to 175	°C	

Electrical Characteristics

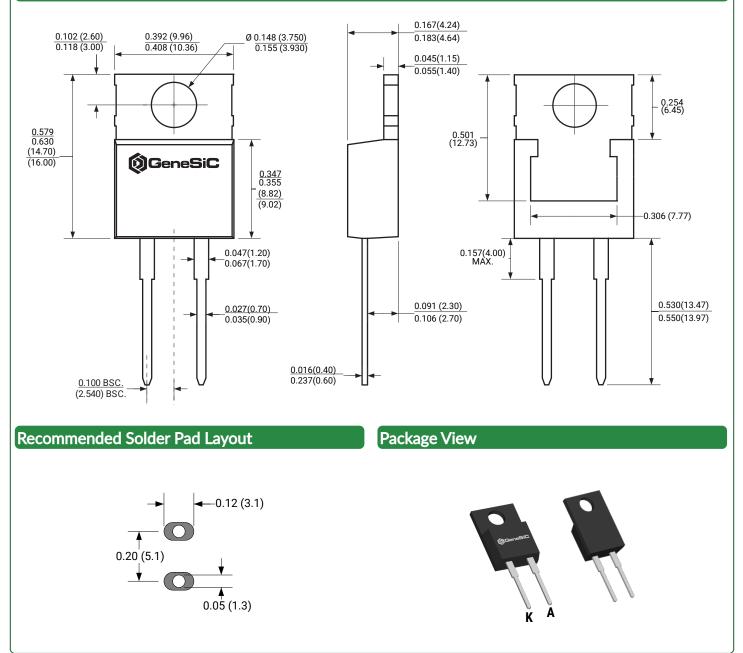

Parameter	Symbol	Conditions		Values			11	Note
Palallelel	Symbol			Min.	Тур.	Max.	Unit	Note
Diode Forward Voltage	V _F	I _F = 0.3 A, T _j = 25°C			1.15	3	V	Fig. 1
	۷F	I _F = 0.3 A, T _j = 175°C			1.5			
Reverse Current	la la	V _R = 3300 V, T _j = 25°C			1	10		Fig. 2
	I _R	V _R = 3300 V, T _j = 175°C			10	100	μA	
Total Capacitive Charge	0.		V _R = 1500 V		12		nC	Fig. 7
	Qc	I _F ≤ I _{F,MAX}	V _R = 2000 V		14			
Switching Time	+-	dl _F /dt = 200 A/µs	V _R = 1500 V		< 10			
	ts		V _R = 2000 V		< 10		ns	
Total Capacitance	C	V _R = 1 V, f = 1MHz			93		pF	Fig. 6
	С	V _R = 2000 V, f = 1MHz			5			

Thermal/Package Characteristics

Parameter	Symbol	Conditions	Values			Unit	Note
Parallieler		Conunions	Min.	Typ.	Max.	UIII	Note
Thermal Resistance, Junction - Lead	R _{thJL}			1.69		°C/W	Fig. 9
Weight	WT			2		g	
Mounting Torque	TM	Screws to Heatsink			1	Nm	


GAP3SLT33-220FP 3300V 0.3A SiC Schottky MPS[™] Diode

Apr. 20 Rev 1.4



Package Dimensions

TO-220-FP Package Outline

NOTE

- 1. CONTROLLED DEIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Related Links

SPICE Models:	https://www.genesicsemi.com/sic-schottky-mps/GAP3SLT33-220FP/GAP3SLT33-220FP_SPICE.zip
PLECS Models:	https://www.genesicsemi.com/sic-schottky-mps/GAP3SLT33-220FP/GAP3SLT33-220FP_PLECS.zip
• CAD Models:	https://www.genesicsemi.com/sic-schottky-mps/GAP3SLT33-220FP/GAP3SLT33-220FP_3D.zip
• Evaluation Boards:	: https://www.genesicsemi.com/technical-support
 Reliability: 	https://www.genesicsemi.com/reliability
Compliance:	https://www.genesicsemi.com/compliance
• Quality Manual:	https://www.genesicsemi.com/quality

www.genesicsemi.com/sic-schottky-mps/

Apr. 20 Rev 1.4 Copyright© 2020 GeneSiC Semiconductor Inc. All Rights Reserved. The information in this document is subject to change without notice. Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155, Dulles, VA 20166; USA Page 6 of 6